Optional Chaining
Version: Swift 5.5 Source: swift-book: Optional Chaining Digest Date: January 24, 2022
Optional chaining is a process for querying and calling properties, methods, and subscripts on an optional that might currently be nil
. Multiple queries can be chained together, and the entire chain fails gracefully if any link in the chain is nil
.
Optional Chaining as an Alternative to Forced Unwrapping
You specify optional chaining by placing a question mark (
?
) after the optional value on which you wish to call a property, method or subscript if the optional is non-nil
.This is very similar to placing an exclamation point (
!
) after an optional value to force the unwrapping of its value.
The main difference is that optional chaining fails gracefully when the optional is nil
, whereas forced unwrapping triggers a runtime error when the optional is nil
.
The next several code snippets demonstrate how optional chaining differs from forced unwrapping and enables you to check for success.
First, two classes called Person
and Residence
are defined:
class Person {
var residence: Residence?
}
class Residence {
var numberOfRooms = 1
}
If you create a new Person
instance, its residence
property is default initialized to nil
, by virtue of being optional. In the code below, john
has a residence
property value of nil
:
let john = Person()
If you try to access the numberOfRooms
property of this person’s residence
, by placing an exclamation point after residence
to force the unwrapping of its value, you trigger a runtime error, because there’s no residence
value to unwrap:
let roomCount = john.residence!.numberOfRooms
// this triggers a runtime error
Optional chaining provides an alternative way to access the value of numberOfRooms
. To use optional chaining, use a question mark in place of the exclamation point:
if let roomCount = john.residence?.numberOfRooms {
print("John's residence has \(roomCount) room(s).")
} else {
print("Unable to retrieve the number of rooms.")
}
// Prints "Unable to retrieve the number of rooms."
This tells Swift to “chain” on the optional residence
property and to retrieve the value of numberOfRooms
if residence
exists.
Because the attempt to access numberOfRooms
has the potential to fail, the optional chaining attempt returns a value of type Int?
, or “optional Int”.
The optional Int is accessed through optional binding to unwrap the integer and assign the non-optional value to the roomCount
constant.
You can assign a Residence instance to john.residence, so that it no longer has a nil value:
john.residence = Residence()
john.residence
now contains an actual Residence
instance, rather than nil
. If you try to access numberOfRooms
with the same optional chaining as before, it will now return an Int?
that contains the default numberOfRooms
value of 1
:
if let roomCount = john.residence?.numberOfRooms {
print("John's residence has \(roomCount) room(s).")
} else {
print("Unable to retrieve the number of rooms.")
}
// Prints "John's residence has 1 room(s)."
Defining Model Classes for Optional Chaining
You can use optional chaining with calls to properties, methods, and subscripts that are more than one level deep.
The code snippets below define four model classes for use in several subsequent examples, including examples of multilevel optional chaining.
These classes expand upon the Person
and Residence
model from above by adding a Room
and Address
class, with associated properties, methods, and subscripts.
The Person
class is defined in the same way as before:
class Person {
var residence: Residence?
}
The Residence
class is more complex than before. This time, the Residence
class defines a variable property called rooms
, which is initialized with an empty array of type [Room]
:
class Residence {
var rooms: [Room] = []
var numberOfRooms: Int {
return rooms.count
}
subscript(i: Int) -> Room {
get {
return rooms[i]
}
set {
rooms[i] = newValue
}
}
func printNumberOfRooms() {
print("The number of rooms is \(numberOfRooms)")
}
var address: Address?
}
As a shortcut to accessing its rooms
array, this version of Residence
provides a read-write subscript that provides access to the room at the requested index in the rooms
array.
Finally, Residence
defines an optional property called address
, with a type of Address?
. The Address
class type for this property is defined below.
The Room
class used for the rooms
array is a simple class with one property called name
, and an initializer to set that property to a suitable room name:
class Room {
let name: String
init(name: String) { self.name = name }
}
The final class in this model is called Address
. This class has three optional properties of type String?
. The first two properties, buildingName
and buildingNumber
, are alternative ways to identify a particular building as part of an address. The third property, street
, is used to name the street for that address:
class Address {
var buildingName: String?
var buildingNumber: String?
var street: String?
func buildingIdentifier() -> String? {
if let buildingNumber = buildingNumber, let street = street {
return "\(buildingNumber) \(street)"
} else if buildingName != nil {
return buildingName
} else {
return nil
}
}
}
Accessing Properties Through Optional Chaining
Use the classes defined above to create a new Person instance, and try to access its numberOfRooms
property as before:
let john = Person()
if let roomCount = john.residence?.numberOfRooms {
print("John's residence has \(roomCount) room(s).")
} else {
print("Unable to retrieve the number of rooms.")
}
// Prints "Unable to retrieve the number of rooms."
Because john.residence
is nil
, this optional chaining call fails in the same way as before.
let someAddress = Address()
someAddress.buildingNumber = "29"
someAddress.street = "Acacia Road"
john.residence?.address = someAddress
In this example, the attempt to set the address
property of john.residence
will fail, because john.residence
is currently nil
.
The assignment is part of the optional chaining, which means none of the code on the right-hand side of the =
operator is evaluated.
In the previous example, it’s not easy to see that someAddress
is never evaluated, because accessing a constant doesn’t have any side effects.
The listing below does the same assignment, but it uses a function to create the address. The function prints “Function was called” before returning a value, which lets you see whether the right-hand side of the =
operator was evaluated.
func createAddress() -> Address {
print("Function was called.")
let someAddress = Address()
someAddress.buildingNumber = "29"
someAddress.street = "Acacia Road"
return someAddress
}
john.residence?.address = createAddress()
You can tell that the createAddress()
function isn’t called, because nothing is printed. (因为 john.residence
目前还是 nil
)
Calling Methods Through Optional Chaining
You can use optional chaining to call a method on an optional value, and to check whether that method call is successful. You can do this even if that method doesn’t define a return value.
The printNumberOfRooms()
method on the Residence
class prints the current value of numberOfRooms
. Here’s how the method looks:
func printNumberOfRooms() {
print("The number of rooms is \(numberOfRooms)")
}
This method doesn’t specify a return type. However, functions and methods with no return type have an implicit return type of Void
, as described in Functions Without Return Values. This means that they return a value of ()
, or an empty tuple.
If you call this method on an optional value with optional chaining, the method’s return type will be Void?
, not Void
, because return values are always of an optional type when called through optional chaining. This enables you to use an if
statement to check whether it was possible to call the printNumberOfRooms()
method, even though the method doesn’t itself define a return value. Compare the return value from the printNumberOfRooms
call against nil
to see if the method call was successful:
if john.residence?.printNumberOfRooms() != nil {
print("It was possible to print the number of rooms.")
} else {
print("It was not possible to print the number of rooms.")
}
// Prints "It was not possible to print the number of rooms."
The same is true if you attempt to set a property through optional chaining. Any attempt to set a property through optional chaining returns a value of type Void?
, which enables you to compare against nil
to see if the property was set successfully:
if (john.residence?.address = someAddress) != nil {
print("It was possible to set the address.")
} else {
print("It was not possible to set the address.")
}
// Prints "It was not possible to set the address."
Accessing Subscripts Through Optional Chaining
You can use optional chaining to try to retrieve and set a value from a subscript on an optional value, and to check whether that subscript call is successful.
NOTE: When you access a subscript on an optional value through optional chaining, you place the question mark before the subscript’s brackets, not after. The optional chaining question mark always follows immediately after the part of the expression that’s optional.
The example below tries to retrieve the name of the first room in the rooms
array of the john.residence
property using the subscript defined on the Residence
class. Because john.residence
is currently nil
, the subscript call fails:
if let firstRoomName = john.residence?[0].name {
print("The first room name is \(firstRoomName).")
} else {
print("Unable to retrieve the first room name.")
}
// Prints "Unable to retrieve the first room name."
The optional chaining question mark in this subscript call is placed immediately after john.residence
, before the subscript brackets, because john.residence
is the optional value on which optional chaining is being attempted.
Similarly, you can try to set a new value through a subscript with optional chaining:
john.residence?[0] = Room(name: "Bathroom")
This subscript setting attempt also fails, because residence is currently nil
.
If you create and assign an actual Residence
instance to john.residence
, with one or more Room
instances in its rooms
array, you can use the Residence
subscript to access the actual items in the rooms
array through optional chaining:
let johnsHouse = Residence()
johnsHouse.rooms.append(Room(name: "Living Room"))
johnsHouse.rooms.append(Room(name: "Kitchen"))
john.residence = johnsHouse
if let firstRoomName = john.residence?[0].name {
print("The first room name is \(firstRoomName).")
} else {
print("Unable to retrieve the first room name.")
}
// Prints "The first room name is Living Room."
Accessing Subscripts of Optional Type
If a subscript returns a value of optional type—such as the key subscript of Swift’s Dictionary
type, place a question mark after
the subscript’s closing bracket to chain on its optional return value:
var testScores = ["Dave": [86, 82, 84], "Bev": [79, 94, 81]]
testScores["Dave"]?[0] = 91
testScores["Bev"]?[0] += 1
testScores["Brian"]?[0] = 72
// the "Dave" array is now [91, 82, 84] and the "Bev" array is now [80, 94, 81]
The first two calls succeed, because the testScores dictionary contains keys for "Dave
" and "Bev
". The third call fails, because the testScores
dictionary doesn’t contain a key for "Brian
".
Linking Multiple Levels of Chaining
Multiple levels of optional chaining don’t add more levels of optionality to the returned value.
To put it another way:
If the type you are trying to retrieve isn’t optional, it will become optional because of the optional chaining.
If the type you are trying to retrieve is already optional, it will not become more optional because of the chaining.
Therefore:
If you try to retrieve an Int value through optional chaining, an Int? is always returned, no matter how many levels of chaining are used.
Similarly, if you try to retrieve an Int? value through optional chaining, an Int? is always returned, no matter how many levels of chaining are used.
The example below tries to access the street
property of the address
property of the residence
property of john
. There are two levels of optional chaining in use here, to chain through the residence
and address
properties, both of which are of optional type:
if let johnsStreet = john.residence?.address?.street {
print("John's street name is \(johnsStreet).")
} else {
print("Unable to retrieve the address.")
}
// Prints "Unable to retrieve the address."
The value of john.residence
currently contains a valid Residence instance. However, the value of john.residence.address
is currently nil. Because of this, the call to john.residence?.address?.street
fails.
If you set an actual Address
instance as the value for john.residence.address
, and set an actual value for the address’s street
property, you can access the value of the street
property through multilevel optional chaining:
let johnsAddress = Address()
johnsAddress.buildingName = "The Larches"
johnsAddress.street = "Laurel Street"
john.residence?.address = johnsAddress
if let johnsStreet = john.residence?.address?.street {
print("John's street name is \(johnsStreet).")
} else {
print("Unable to retrieve the address.")
}
// Prints "John's street name is Laurel Street."
Chaining on Methods with Optional Return Values
You can also use optional chaining to call a method that returns a value of optional type, and to chain on that method’s return value if needed.
The example below calls the Address
class’s buildingIdentifier()
method through optional chaining. This method returns a value of type String?
. As described above, the ultimate return type of this method call after optional chaining is also String?
:
if let buildingIdentifier = john.residence?.address?.buildingIdentifier() {
print("John's building identifier is \(buildingIdentifier).")
}
// Prints "John's building identifier is The Larches."
If you want to perform further optional chaining on this method’s return value, place the optional chaining question mark after the method’s parentheses:
if let beginsWithThe =
john.residence?.address?.buildingIdentifier()?.hasPrefix("The") {
if beginsWithThe {
print("John's building identifier begins with \"The\".")
} else {
print("John's building identifier doesn't begin with \"The\".")
}
}
// Prints "John's building identifier begins with "The"."
Last updated
Was this helpful?